Skill (or lack thereof) of data-model fusion techniques to provide an early warning signal for an approaching tipping point
نویسندگان
چکیده
Many coupled human-natural systems have the potential to exhibit a highly nonlinear threshold response to external forcings resulting in fast transitions to undesirable states (such as eutrophication in a lake). Often, there are considerable uncertainties that make identifying the threshold challenging. Thus, rapid learning is critical for guiding management actions to avoid abrupt transitions. Here, we adopt the shallow lake problem as a test case to compare the performance of four common data assimilation schemes to predict an approaching transition. In order to demonstrate the complex interactions between management strategies and the ability of the data assimilation schemes to predict eutrophication, we also analyze our results across two different management strategies governing phosphorus emissions into the shallow lake. The compared data assimilation schemes are: ensemble Kalman filtering (EnKF), particle filtering (PF), pre-calibration (PC), and Markov Chain Monte Carlo (MCMC) estimation. While differing in their core assumptions, each data assimilation scheme is based on Bayes' theorem and updates prior beliefs about a system based on new information. For large computational investments, EnKF, PF and MCMC show similar skill in capturing the observed phosphorus in the lake (measured as expected root mean squared prediction error). EnKF, followed by PF, displays the highest learning rates at low computational cost, thus providing a more reliable signal of an impending transition. MCMC approaches the true probability of eutrophication only after a strong signal of an impending transition emerges from the observations. Overall, we find that learning rates are greatest near regions of abrupt transitions, posing a challenge to early learning and preemptive management of systems with such abrupt transitions.
منابع مشابه
Design and Development of Early Warning System for Desertification and Land Degradation
Early warning systems are key components of strategies to reduce risk. This research, by adopting a systematic approach in the management of the risk of desertification and by including previously developed models and systems, offers an integrated efficient structure in terms of early warning for the risk of desertification as a pilot system for semi-arid areas of west Golestan Province in IRAN...
متن کاملFlood Forecasting Using Artificial Neural Networks: an Application of Multi-Model Data Fusion technique
Floods are among the natural disasters that cause human hardship and economic loss. Establishing a viable flood forecasting and warning system for communities at risk can mitigate these adverse effects. However, establishing an accurate flood forecasting system is still challenging due to the lack of knowledge about the effective variables in forecasting. The present study has indicated that th...
متن کاملArtificial Neural Network Model for Predicting Insurance Insolvency
In addition to its primary role of providing financial protection for other industries the insurance industry also serves as a medium for fund mobilization. In spite of the harsh economic environment in Nigeria, the insurance industry has been crucial to the consummation of business plans and wealth creation. However, the continued downturn experienced by many countries, in the last decade, se...
متن کاملAn integrative quantifier of multistability in complex systems based on ecological resilience
The abundance of multistable dynamical systems calls for an appropriate quantification of the respective stability of the (stable) states of such systems. Motivated by the concept of ecological resilience, we propose a novel and pragmatic measure called 'integral stability' which integrates different aspects commonly addressed separately by existing local and global stability concepts. We demon...
متن کاملUsing GENIE to study a tipping point in the climate system.
We have used the Grid ENabled Integrated Earth system modelling framework to study the archetypal example of a tipping point in the climate system; a threshold for the collapse of the Atlantic thermohaline circulation (THC). eScience has been invaluable in this work and we explain how we have made it work for us. Two stable states of the THC have been found to coexist, under the same boundary c...
متن کامل